M. Sc. – II Inorganic Chemistry Syllabus

Semester – III

Papers

No. of Lectures

CH-326	Organometallic compounds of Transition metals	[60]
	& Homogeneous catalysis	
CH-330	Coordination Chemistry, Magnetism & Reaction Mechanism	[60]
CH-331	Structural Methods in Inorganic Chemistry	[60]
CH-332	Bioinorganic Chemistry: Inorganic Elements in the	[60]
	Chemistry of Life	

Semester – IV

CH-430	Inorganic Solids & heterogeneous catalysis	[60]
CH-431	Materials Science	[60]
CH-445	Inorganic Applications in Industry, Biotechnology &	[60]
	Environmental Chemistry	

SEMESTER - III

CH-326

Organometallic compounds of Transition metals & Homogeneous catalysis

Α.	Synthesis and properties of organometallic compounds with i)carbonyl	
	ii) hydrocarbyl iii) Phosphines iv) nitrosyl ligands	[18 L]
Β.	Fluxionality of organometallic compounds	[4 L]
C.	Organometallic compounds as electrophiles, nucleophiles, activating a	gents,
	protecting agebts, redox agents	[8 L]
D.	Organometallic compounds, Environment, Agriculture & Medicine	[6 L]
Ε.	Homogeneous Catalysis:	
	I: General introduction to Homogeneous catalysis, explanation of Tollm	nan's
	catalytic cycle [4	L]
	II: Following processes should be taught with examples from each proc	cess.
	i) Oxo process ii) Monsanto Process iii) Wacker Process iv) Epoxidatio	n
	v) Use of Reppe's catalysis vi) Heck reactions vii) Suzuki coupling [20) L]

Reference Books:

- 1. Organometallic chemistry by R. C. Mehrotra and A. Singh, 1992, Wiley Eastern Ltd.
- 2. Inorganic chemistry by Butler, Harrod, 1989, Benjamin / Cummins Pub. Co.
- Principles of organometallic chemistry 2nd Edn. P. Powell, 1988, Chapman and Hall.
- 4. Organometallic compounds Morries sijlirn. IVY Publication house

CH-330

Coordination Chemistry, magnetism & Inorganic Reaction Mechanism

Coordination Chemistry, magnetism

A. F	Recapitulation of CFT concepts	[4 L]
-------------	--------------------------------	-------

- **B.** Theories of magnetism, Exchange model [6 L]
- C. Magnetism of monomeric & polymeric coordination compounds [10 L]

D. Study of mixed valence compounds, their magnetic behaviour	[10 L]			
Inorganic Reaction Mechanism				
A. Types of Mechanism	[2 L]			
B. Substitution in square planar & octahedral complexes	[4 L]			
C. Electron transfer reactions of coordination compounds	[4 L]			
D. Inner & outer sphere reactions	[5 L]			
E. Photochemical reactions	[5 L]			
F. Oxidative addition, reductive elimination, insertion reactions	[5 L]			
G. Isomerisation	[5 L]			

Reference books:

Coordination Chemistry & Magnetism

- Inorganic chemistry, Principle of Structure and Reactivity, 4th Edn.J. E. Huhay, E. A. Keiter, R. L. Keiter(1993), Addison Wesley Publishing Co.
- 2. Elements of Magnetochemistry, 2nd Edn., R. L. Datta& A. Syamal (1993) Affiliation, East-Wiley Press (p) ltd.
- 3. Magnetism and Transition Metal Complexes, F. E. Mabbs and D. J. Machin (1973) Chapman and Hall, London.
- 4. Coordiantion Chemistry, Bannerjee(1993), Tata McGraw Hill Publishing Co. New Delhi.
- 5. Physical Methods for Chemists 2nd Edn., R. S. Drago(1992).

Inorganic Reaction Mechanisms

- 1. Inorganic Chemistry by Shriver and Atkins. 3rd Edn(1999) Oxford University Press.
- 2. Mechanism of Inorganic Reactions, by Basalo & pearson(1977), Wiley Eastern Ltd.
- 3. Inorganic Reaction Mechanism by M. L. Tobe (1972), Thomas Nelson & Sons.

CH-331

Structural Methods in Inorganic Chemistry

- A. Resonance techniques such as NMR. ESR, Mossbauer, NQR & cyclic voltammetry
 [35 L]
- B. Non resonance techniques such as XRD, Thermo-gravimetric analysis (TG, DTA, DSC).
 [15 L]

- C. Introduction, Principle and applications of X-ray Photoelectron Spectroscopy, Auger Photoelectron Spectroscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM),
 [10 L]
- 1. Instrumental Methods of Chemical Analysis.(1979) Chatwal-Anand-Himalaya Publishing House.
- 2. Laboratory Techniques in Electroanalytical Chemistry edited by P. T. Kissinger and W. R. Heinman(1984)M Dekker vInc.(USA).
- 3. Electrochemical Methods, Fundamentals and Applications by A. J. Bard and L. R. Faulkner (1980), John Wiley (NY).
- 4. i) Dennis H. Evans, Journal of Chemistry, Education 60, 290(1983).
 - ii) P. T. Kissinger, W. R. Hienman, Journal of Chemical Education, 60, 702(1983).
 - iii) J. J. Van Benschoten, J. of Chemical Education, 60, 772, (1983).
- An introduction to Thermogravimetry by C. J. Keatlih an D. Dollimore(1975), Heydon and Sons Ltd.
- 6. Thermal Method of Analysis by W. W. Wendlandt, 3rd Edn. 1986 john Wiley(NY).
- Thermal Method sof Analysis by P.J. Haines 1995, Blackie Academic and Proffessionals.
- 8. Introduction to X-ray powder Diffractometry by R. Jenkins and R. Snyder 1996, Wiley(NY).

CH-332

Bioinorganic Chemistry:

Inorganic Elements in the Chemistry of Life

A. Structure, functions & biochemistry of enzymes containing following metal ions:

1.	Zinc	[6 L]
2.	Copper	[6 L]
3.	Nickel	[6 L]
4.	Manganese: photosynthesis, catalase, peroxidases	[6 L]
5.	Reactions of Cobalamin	[6 L]

At least one model compound of each of the enzyme should be discussed in the class

B. Medicinal Inorganic Chemistry

1.	Chemical Nucleases	[12 L]

- 2. Radiopharmaceuticals [10 L]
- 3. MRI contrast reagents [8 L]

Metalloprotiens & Bioinorganic Medicines

- 1. Biological Chemistry of Elements. J. J. R. Frausto da Silva, R. J. P. Williams, Chapters 2,12,14, 15, 16, 17.
- 2. Principles of Bioinorganic chemistry by S. J. Lippard and J. M. Berg, (I1994) University Science Books(USA)
- 3. Bioinorganic chemistry: inorganic elements in the chemistry of life, An Introduction And Guide by Wolfgang Kaim, Brigille Schwederski91994) John Wiley and Sons.
- Bioinorganic chemistry, Bestini, Gray, Lippard, Vlentine, 1st South asian Edn.(1980) Viva books pvt.ltd.
- 5. Comprehensive coordination chemistry Vol.VI
- 6. Bio-organic chemistry: a Chemical approach to enzyme action 3rd edition.

Semester – IV

CH-430

Inorganic Polymers & Heterogeneous catalysis

A. Inorga	nic Polymers	[18 L]
1.	Polycationic & polyanionic compounds	
2.	Peroxides, peroxyacids and heteropolyacids	
3.	Metal clusters	
B. Introdu	uction to heterogeneous catalysis:	[12 L]
1.	Basic principles	
2.	Classification	
3.	Quantitative aspects of adsorption & catalysis	
4.	Types of reactors	
C. Zeolite	e and Supported Metal Catalysts	[15 L]
D. Nanon	naterials as Catalysts: Environment, Organic, Semiconducting	[10 L]
E. MCM-	41, Clays as catalyst	[5 L]
Heterogeneo	ous Catalysts and Structural Methods.	

1. Encyclopedia of analytical science, Academic Press Vol.1 to 9 1995, Editor Alan Townshend

- 2. Studies in surface science and catalysts, Vol. 85, 1994, Elsviere science Publications, B. V. pg: 9 to 42. Vol, 137 (2000) pg: 37 to 65.
- 3. Verified Synthesis of Zeolite Material, Elsevier Science Pub. (2001) pg: 19 to 100.
- 4. Comprehensive Coordination Chemistry Vol. VI

CH-431

Material Science

Α.	Diffusion in solid and its mechanism [3 L]			
В.	Solid state reactions and crystal growth [5			
C.	Imper	fectio	on and related phenomenon in solids	[6 L]
D.	Nanomaterials:			
	1. Introduction, types & properties [4			
	2. Following nanomaterials should be covered with reference to basic			
	aspects, properties & applications			
		a.	Electronic & optical materials	[10 L]
		b.	Magnetic materials	[8 L]
		C.	Superconducting materials	[6 L]
		d.	Ceramic materials	[6 L]
		e.	Biomaterials	[6 L]
		f.	Nanocomposites	[6 L]

- 1. Introduction to Solids, I.V. Azerroff
- 2. Principles of solid state, H.V. Keer
- 3. Solid state chemistry, N.B. Hannay
- 4. Elements of material science, Van Vleck
- 5. Electronic structure & chemistry of solids, P.A. Cox
- 6. Insight into speciality Inorganic Chemistry, David Thompson

CH-445

Applications of Inorganic Chemistry in Industry,

Biotechnology & Environmental Chemistry

(Any two sections from CH-445)

Section A: Applications of Inorganic Materials

1. Electrochemical Applications [9 L]	
2. Dyes & pigments: Inorganic pigments, classification, properti		
dyes, natural dyes and their interactions with metals [10 L]	
3. Composite materials: Synthesis, properties & applications	9 L]	
4. Miscellaneous applications	2 L]	
Two research papers related to electrochemical applications 8	k natural	
dye with metal should be discussed in the class		
Section B: Environmental Chemistry: Waste Water treatment & a	analysis	
1. Introduction to waste water analysis; Specification of treated wa	astewater	
for disposal into surface water Screening chamber, Grit chambe	er,	
Oil & grease removal	[6 L]	
2. Wastewater engineering for biological treatment: Principle, role	of micro	
organisms, ecosystem, designing of biological unit	[12 L]	
a. Stabilisation pond		
b. Aerated lagoon		
c. Activated sludge process		
d. Trickling filters		
e. Anaerobic treatment		
3. Biotechnology & Wastewater Management: Applications of		
biotechnology for the treatment of a. High strength waste b. prin	mary &	
secondary sludge c. phenol & cyanide removal	[4 L]	
4. Energy sources for future: Solar energy, energy from biomass,	wind	
Towers, geothermal etc	[4 L]	
5. Inorganic metals in environment: Bioaccumulation of toxic meta	als	
Lead, mercury, calcium, arsenic	[4 L]	
Section C: Applications of Inorganic Chemistry in Biotechnol	ogy	
1. Biotechnology: Introduction	3 L]	
2. Living things & Industrial Processes [3 L]	
3. Biotechnology & fuels	3 L]	
4. Biotechnology & food [7 L]	
5. Biotechnology & water [7 L]	
6. Biotechnology & health and diseases [7 L]	
 Elements of Biotechnology by p. K. Gupta(2003), Rastogi Publications Environmental chemistry by A. K. Bagio. 		

- 3. Principle of environmental chemistry by James Girard. Bartlett publishers
- 4. Wastewater engineering, Calf & Eddy
- 5. Wastewater treatment for pollution control, Arceivala
- 6. Manual on sewage & sewage treatment, Ministry of Works, Delhi
- 7. Principles of water quality control, T.H.Y. Tebbut

Inorganic Chemistry Practical

CH-387

Experiments & computer applications in Inorganic Analysis

A: Analysis of the following samples (any ten)

- a) Ore b) Alloy c) Cement d) Manganese from tea leaves
- e) Vitamin C from Lemon juice (Biological fluid) f) fertilizer (PO_4^{3-})
- g) Analysis of Na, K & Ca using Flame photometry h) Soil analysis
- i) Ion exchange j) Copper from fungicide
- **B:** Statistical Analysis of data obtained from the estimation of following compounds using computational methods
 - a) Iron b) Copper c) Nickel d) Cobalt e) Chromium
 - f) Zinc g) Manganese

CH-388

Practical Course – II

A: Inorganic Instrumental Analysis and computer applications

- 1. To determine magnetic susceptibility of coordination compounds (two)
- 2. TGA analysis of coordination compounds (two)
- 3. Kinetics of aquation of a) Cobalt complex b) iron complex
- 4. Photochemical reaction Metal to Ligand charge transfer
- Table work on analysis coordination compounds using ANY FOUR
 Techniques a) IR b) ESR c) Cyclic voltammetry d) NMR e) XRD
- 6. Kinetics of dye degradation using CdS nanoparticles
- 7. Catalytic transfer hydrogenation of nitrobenzene to aniline using a catalyst
- 8. To study the Metal-DNA interaction spectrophotometrically

The structural analytical data should be analysed using computational methods.

B: Preparation of inorganic compounds (any ten)

a) NiO b) Nickel ferrite c) Zinc ferrite d) trans-[Co(en)₂Cl₂]Cl

e) $K_3[Cr(ox)_3]$ f) $(NH_4)_3[Cr(ox)_3]$ g) $[Cu(acac)_2]$ h) [Mn(salen)]

i) $[Mn(acac)_3]$ j) $[Cu(thiourea)_3]_2SO_4$ k) Copper phthalocyanin

I) copper-1,10-phenanthroline

CH-488

Projects/Extended Practicals in Inorganic Chemistry

A: Preparation and purity of following complexes of

- 1. DMG
- 2. 8-hydroxy quinoline
- 3. Salicyaldoxime
- 4. thiourea

with Copper, Nickel, Iron, Chromium & Manganese (any three metals)

B: Structural determination of above complexes using following techniques

- i) UV-Visible spectroscopy ii) Magnetic susceptibility
- iii) Thermogravimetric analysis iv) IR v) Solution conductivity
- **C**. Introduction to literature survey