T.Y.B.Sc. Microbiology Syllabus

Submitted on 13/4/2010

University of Pune

Equivalences for the old Courses with New courses in Microbiology

	Semester III				Seme	ester IV	
New Course		Old Course		New Course		Old course	
Paper	Course Title	Paper	Course Title	Paper	Course Title	Paper	Course Title
MB 331	Medical Microbiology - I	MB 331	Medical Microbiology - I	MB 341	Medical Microbiology - II	MB 341	Medical Microbiology - II
MB 332	Genetics & Molecular Biology - I	MB 332	Genetics & Molecular Biology - I	MB 342	Genetics & Molecular Biology - II	MB 342	Genetics & Molecular Biology - II
MB 333	Enzymology	MB 333	Enzymology	MB 343	Metabolism	MB 343	Metabolism
MB 334	Immunology -I	MB 334	Immunology -I	MB 344	Immunology -II	MB 344	Immunology -II
MB 335	Fermentation Technology - I	MB 335	Fermentation Technology - I	MB 345	Fermentation Technology - II	MB 345	Fermentation Technology - II
MB 336	Food & Dairy Microbiology	MB 336	Food & Dairy Microbiology	MB 346	Soil & Agricultural Microbiology	MB 346	Soil & Agricultural Microbiology

T. Y. B. Sc. Microbiology

Practical Courses

	New Course	(Old Course
Paper	Course title	Paper	Course title
MB 347	Practical course – I	MB 347	Practical course – I
	Applied Microbiology		Applied Microbiology
MB 348	Practical course – II	MB 348	Practical course – II
	Biochemistry & Genetics		Biochemistry & Genetics
MB 349	Practical course – III	MB 349	Practical course – III
	Diagnostic Microbiology & Immunology		Diagnostic Microbiology & Immunology

ATKT Rules-As earlier

Syllabus for T. Y. B. Sc. Microbiology

<u>**Course Structure</u>**: T. Y. B. Sc. MICROBIOLOGY Course includes 12 theory papers and 3 practical courses. Six theory papers will be taught in Semester III and the remaining six in Semester IV. The examination will be held semester-wise for theory paper whereas the examination for three practical courses will be held at the end of the Semester IV.</u>

	Semester III				Semester IV			
Paper	Course Title	Internal Marks	University Exam	Paper	Course Title	Internal Marks	University Exam	
MB 331	Medical Microbiology - I	10	40	MB 341	Medical Microbiology - II	10	40	
MB 332	Genetics & Molecular Biology - I	10	40	MB 342	Genetics & Molecular Biology - II	10	40	
MB 333	Enzymology	10	40	MB 343	Metabolism	10	40	
MB 334	Immunology -I	10	40	MB 344	Immunology -II	10	40	
MB 335	Fermentation Technology - I	10	40	MB 345	Fermentation Technology - II	10	40	
MB 336	Food & Dairy Microbiology	10	40	MB 346	Soil & Agricultural Microbiology	10	40	

T. Y. B. Sc. Microbiology

Practical Courses

Paper	Course title	Internal Marks	University Examination
MB 347	Practical course – I	20	80
	Applied Microbiology		
MB 348	Practical course – II	20	80
	Biochemistry & Genetics		
MB 349	Practical course – III	20	80
	Diagnostic Microbiology & Immunology		

For theory papers, External examination – 40 marks

MB	– 331: MEDICAL MICROBIOLOGY - I	
I.	Introduction to infectious diseases of following systems : (common	10
	diseases, pathogens and symptoms, defence mechanisms)	
	1. Respiratory system	
	2. Gastrointestinal system	
	3. Kidney and Liver	
	4. Genital system	
	5. Central nervous system	
II.	Study of following groups of bacterial pathogens (with respect to -	
	Classification and biochemical characters, Antigenic structure, Viability	
	characteristics, Pathogenecity, Pathogenesis, Laboratory diagnosis,	
	Epidemiology, Prophylaxis and Chemotherapy):	
	1. Enteric pathogens (<u>E. coli, Shigella, Salmonella</u> ,	8
	Campylobacters, Vibrio)	
	2. Pneumococci and <i>Neiserria</i>	6
	3. Pyogenic organisms – Staphylococcus, Streptococcus,	4
	Pseudomonas	4
	4. Spirochetes – Treponema, Leptospira	2
	5. Clostridium tetani and Clostridium perfringens	2
	6. Bacillus anthracis	2
	7. Mycobacterium tuberculosis and Mycobacterium leprae	2
	8. Rickettsia	
III.	Epidemiology	8
	1. Definition, scope and applications	
	2. Concepts of mortality and morbidity rates, incidence and	
	prevalence	
	3. Disease distribution based on time, place and person	
	4. Case control and cohort studies – study design and application	
	5. Principle and methods – Clinical trials of drugs and vaccines	
	(Randomized control trials Concurrent parallels and cross-over	
	trials)	
	6. Epidemiology of infectious diseases –	
	1. Sources and reservoirs of infection	
	2. Modes of transmission of infections	
	3. Disease prevention and control measures	

MB	– 341: Medical Microbiology - II			
I.	Study of following groups of parasites (with respect to – Morphological			
	characteristic, life cycle and classification, Viability characteristics,			
	Pathogenecity, Pathogenesis, Symptoms, Laboratory diagnosis			
	(serological diagnosis wherever applicable), Epidemiology, Prophylaxis			
	and Chemotherapy):			
	1. Plasmodium	2		
	2. Entamoeba	2		
	Study of following groups of fungal pathogens (with respect to –			
	Morphological and cultural characteristics, Classification, Pathogenecity,			
	Pathogenesis, Symptoms, Laboratory diagnosis, Epidemiology,			

	Prophylaxis and Chemotherapy): Systemic and topical fungal pathogens: <i>Candida, Aspergillus,</i> <i>Cryptocococus, Microsporum</i>	4			
	 Study of following groups of viral pathogens (with respect to – Virion characteristics, Viability characteristics, Pathogenecity, Pathogenesis, Symptoms, Laboratory diagnosis (including serological diagnosis), Epidemiology, Prophylaxis and Chemotherapy): HIV Polio virus Dengue virus Hepatitis A and Hepatitis B viruses Influenza virus FMD virus 	2 2 2 2 2 2 2 2 2 2			
	7. Rinderpest virus	2			
II.	Chemotherapy	2			
	A. Introduction to chemotherapy:B. Desirable parameters of good chemotherapeutic agent (Selective	24			
	b. Desirable parameters of good chemotherapeutic agent (Selective toxicity, Bioavailibility of Drug, MIC, MBC, LD-50 value,				
	Routes of drug administration				
	C. Mode of action of antimicrobiol agents on	16			
	a. Bacteria:				
	i) Cell well (Beta lactams, cycloserine, bacitracin)				
	ii) Cell membrane (Polymyxin, Monensin)				
	iii) Protein synthesis (Streptomycin, Tetracyclin)				
	iv) Nucleic Acids (Nalidixic Acid, Actinomycin D, rifamycin,				
	Quinolines)				
	v) Enzyme inhibitors (Trimethopreim, Sulfa drugs)				
	b. Fungi (Griseofulvin, Nystatin)				
	c. Viruses (acyclovir, zidovudine)				
	d. Protozoa (metronidazole, mepacrine)				
III.	Mechanism of drug resistance	4			

References:

- 1. Tortora, G.J., Funke B.R., Case C.L, 1992. Microbiology: An introduction5th Edition, Benjamin Pub.Co. NY
- 2. Davis B.D. ,Debacco, 1990 Microbiology 4th edition, J.B. Lippincott Co. NY
- 3. Zinsser, W, 1976, Microbiology Edition, W.K Jklik, NY (for topic II)
- 4. Dey, N.C and Dey, TK. 1988, Medical Bacteriology, 14th Edition Allied agency.
- 5. Ananthnarayana, R. and C.E, Jayaram Panakar,1996 Text book of microbiology, 5th ition, Orient Longman.
- 6. Park and Park, Preventive and Social medicine.
- 7. David Greenwood, Antimicrobial Chemotherapy
- 8. Franklin, T.J and Snow, G,A. Biochemistry of Antimicrobial Action.
- Mukherjee, K.L 1988 Medical Laboratory Technology, Vol III, 10th Edition, Tata Mc. Graw-Hill Pub Co
- 10. Roitt, P.I: Mims, C.J., Medical Microbiology
- 11. Chakraborty,P.,2003 A textbook of Microbiology, 2nd Edition New Central Book Agency, India.

MB	- 332: GENETICS AND MOLECULAR BIOLOGY	
I.	DNA Replication	
	C. DNA replication-	5
	Single replicon. Bidirectional movement of replication fork. Ori C,	
	Prepriming, Priming reaction	
	• DNA polymerases, DNA synthesis of leading, lagging strand	
	Okazaki fragments.	
	• Termination- Ter sequence, Tus protein	
II.	Prokaryotic Transcription and Operons	
	a. 1) Transciption of Bacterial DNA	8
	• Structure of a typical bacterial Promotor	
	• Structure and role of RNA polymerase	
	• Initiation, elongation and termination – Rho dependent and	
	independent	
	2) Salient differences between prokaryotic and eukaryotic	
	transcription.	
	b. Concept of operon, Positive and negative control of operon	8
	c. Lac operon. Different mutants of Lac operon	
	d. Arabinose operon	
	e. Catabolite repression	
	f. Tryptophan operon- attenuation control	
III.	Prokaryotic translation	8
	Structure of m-RNA, t-RNA, Ribosomes and their role in translation	
	Initiation, elongation, translocation and termination of protein synthesis	
IV.	Genetics of Bacteriophages	8
	a. One step growth curve	
	b. Doerman's experiment to understand intracellular development of	
	phages in lytic cycle	
	c. Lytic and Lysogenic cycle – detailed mechanism of switch over	
	(in lambda)	
	d. Bacteriophage mutants Plaque morphology, host range,	
	conditional lethal (Ts and Am)	
V.	Repair mechanisms	5
	a. Photoreactivation	
	b. Excision repair	
	c. Recombination repair	
	d. Mismatch repair	
VI.	Genetics of Fungi: Revision of - Mendelian laws, Eukaryotic cell cycle,	6
	Mitosis and Meiosis, Concept of Polyploidy	
	a. Lifecycle of <i>N. crassa</i> mapping by tetrad analysis	
	b. Parasexual cycle in Aspergillus and its significance	

MB	- 342: GENETICS AND MOLECULAR BIOLOGY				
I.	Gene transfer, Recombination and Mapping Techniques				
	 A. Transformation Discovery of transformation – Griffith's experiment 	6			
	 Role of com genes in development of competence in <i>S. pneumoniae</i> Detailed Process of transformation in Gram positive (<i>S. pneumoniae</i>) and Gram negative bacteria (<i>H. influenzae</i>) 				
	Factors affecting transformation process a. Competence				
	b. Molecular weight of DNA				
	c. Concentration of DNA	6			
	B. Transduction	6			
	i. Discovery of transduction – Lederberg and Tatum's experiment				
	ii. Generalized transduction (mediated by P22phage)				
	iii. Specialized transduction of (mediated by lambda phage – lambda d gal, lambda p bio, helper phage, double lysogen)				
	C. Conjugation:	6			
	i. Discovery of conjugation				
	ii. Properties of F plasmid, "tra" operon				
	iii. F^+ , F^- conjugation process				
	iv. Formation of Hfr stains				
	v. Cross between Hfr, F ⁻ cells				
	ii. Formation of F' strains				
	i. Cross between F', F cells				
	D. Recombination				
	i. Definition of recombination				
	ii. Types of recombination				
	iii. Homologous recombination (Holliday model)				
	iv. Single strand assimilation in bacteria, role of Rec A, Rec BCD, Ruv				
	system in homologous recombination				
	v. Site specific recombination (Lambda phage) – role of Int, IHF, Xis				
	vi. Models of recombination with examples				
	b. Breakage and copying				
	c. Copy choice	6			
	E. Recombination mapping:	6			
	i. Principals of mapping, recombination frequency, map unit.				
	ii. Mapping of chromosome by-				
	a. Co-transformation				
	b. Co-transduction				
	c. Conjugation (Interrupted mating experiment)				
	d. Four on four test for <i>Streptomyces</i>				
II.	Genetic Complementation	2			
	a. Cis-trans test of genetic function				
1					
	b. Intercistronic (Tryptophan synthatase of <i>E.coli</i>) and				
111	Intracistronic complementation (rII locus of T4 phage)				
III.	Bacterial Plasmids	4			
	a. Structure and properties of plasmids				
	b. Types of Plasmids				

	c. Plasmid replication and incompatibility					
	d. Amplification and Curing of Plasmid					
IV.	Genetic Engineering					
	a. Concept of Genetic Engineering					
	b. Restriction Enzymes					
	c. Vectors used: Plasmids, Viral DNA, cosmid, phagmid, PACs,					
	BACs, YACs, Expression vectors					
	d. Recombinant DNA technology					
	i. Cutting of DNA					
	• 5' extension					
	• 3' extension					
	• Blunt ends					
	ii. Joining of DNA by T4 and Lambda DNA ligase					
	iii. Homopolymer tailing, Linkers, Adaptors.					
V.	Basic Molecular Biology Techniques	4				
	a. Isolation of plasmid DNA (Alkali lysis method)					
	b. Agarose gel Electrophoresis					
	c. Southern blot					
	d. Northern blot					
	e. PCR Technique					

References:

- 1. Stricberger, M.W., 1985 Genetics, 3rd Edition Macmillan Pub. Co. NY.
- 2. Stanier, R. Y., 1985, General Microbiology, 4th Edition, and 5th Edn Macmillan Pub. Co.Ny
- 3. Hayes, William, 1984, The Genetics of Bacterial and their Viruses, CBS pub, New Delhi.
- 4. Russel, Peter, Essential Genetics, 2nd Edn, Blackwell Science Pub.
- 5. Primrose, S. B and Old. Principles of Gene Manipulation
- 6. Lewin Bengamin, 1994, Genes II, VII and VIII Oxford University Press
- 7. Stent. S.G., m Calender, R, 1986, Molecular Genetics: An Introducctory Narrative, 2nd Edition, CBS Publishers and Distributors, India.
 Friefelder, D., Molecular Biology, 2nd Edn 1995, Narosa Publishing
- House.
- 9. Watson. J.D, Molecular Biology of Gene.

MB	- 333: ENZYMOLOGY	
I.	Enzymes	
	A. Structure of enzymes	5
	Methods to determine amino acid residues at active site	
	Determination of the primary structure of enzyme	
	B. Role of cofactors in metabolism	6
	Occurrence, Structure and biochemical functions of the following:	
	• Nicotinic Acid (Niacin) and the pyrimidine nucleotides.	
	• Riboflavin (Vit B2) and the flavin nucleotides	
	• Thiamine (Vit B1) and Thiamine Pyrophosphate	
	Lipoic acid	
	Biotin and Biocytin	
	Pantothenic acid and coenzyme A	
	Vit B6 group and its coenzymes	
	• Folic acid and it's coenzyme forms	
	Metal ions	
II.	C. Enzyme assays	4
	a. Principles of enzyme assays: Sampling methods and continuous	
	assay.	
	b.Suitable examples of assays:	
	i. Spectrophotometric methods	
	ii. Spectroflurometric methods	
	iii. Luminescence methods	
	iv. Electrode method	
	v. Manometric methods	
	vi. Radioisotope assay	
III.	. Principles and Methods of Enzyme purification	8
	a. Methods of cell fractionation	
	b. Principles of enzyme purification	
	c. Methods of purification	
	i. Based on molecular size	
	ii. Based on solubility differences	
	iii. Based on electric charge	
	iv. Based on specific binding property and selective	
	adsorption d. Criteria for purity-SDS-PAGE	
IV	Immobilization of enzymes and whole cells	2
1 V	Concept, methods of immobilization and applications	2
V	Characterization of enzyme:	4
v	Determination of Molecular weight based on following	-
	methods: Ultracentrifugation, SDS-PAGE, gel filtration	
VI	Enzyme Kinetics	10
• •	A. The concept and use of initial velocity	
	B. The Michaelis Menton equation for the initial velocity of	
	single substrate enzyme catalyzed reaction. Brigg's Haldane	
	modification of Michaelis Menton equation. Michaelis	
	Menton plot. Definition with significance of Km, Ks, Vmax.	

	C. Transformation of the Michaelis Menton equation for plotting				
	kinet	kinetic data.			
	i.	The Lineweaver and Burk plot			
	ii.	1			
	iii.	The Hanes plot			
	iv.	The Eisenthal and Cornish Bowden plot			
	D Enzy	me Inhibitions: Kinetics of Inhibition			
VII	Metabolic R	egulations	9		
	i.	Enzyme compartmentation at cellular level			
	ii.	Allosteric enzymes			
	iii.	Feedback mechanisms .			
	iv.	Covalently modified regulatory enzymes (e.g. Glycogen			
		phosphorylase)			
	v.	Proteolytic activation of zymogens.			
	vi.	Isozymes concept and examples			
	vii.	Multienzyme complex e.g. Pyruvate dehydrogenase			
		complex(PDH)			

MB	- 343: Metabolism	
I.	Membrane transport mechanisms	6
	i. Passive transport-Diffusion, Osmosis, Facilitated transport	
	ii. Active transport-Active transport systems in bacteria	
	iii. Group translocation of sugars in bacteria	
	iv. Ionophores : Mechanism and examples	
II.	Bioenergetics	16
	i. Laws of thermodynamics	
	ii. Concepts of free energy, entropy, high energy compounds	
	ii. ATP structure and formation (substrate level and oxidative	
	phosphorylation). Hypotheses of ATP formation, with special	
	emphasis on chemiosmotic coupling.	
	iii. Energetics of mitochondrial electron transfer chain	
III.	Biosynthesis and Degradation	18
	A. Chemistry, concept of polymerization of macromolecules-	
	Polysaccharides. (Starch, glycogen, peptidoglycan); Proteins,	
	Lipids (fatty acids, triglycerides and phospholipids) and Nucleic	
	acids.	
	B. Degradation of macromolecules-polysaccharides (starch,	
	glycogen),, fatty acids oxidation and proteins-urea cycle.	
IV.	Bacterial Photosynthesis:	8
	i. Habitat and examples of photosynthetic bacteria	
	ii. Oxygenic and Anoxygenic mechanisms	
	iii. Photosynthetic apparatus	
	iv. Cyclic and non-cyclic photophosphorylation, Calvin cycle	

References:

 Lehninger. A.L Principles of Biochemistrry 2nd edition 1993, CBS Publicatiopns

- 2. Cohn and Stumph. Outline od Biochemistry, 4th Edition 1976, Wiley Easterb, New Delhi.
- 3. Stainer. R.Y General Microbiology, 4th Edn, 1976 Macmillan Pub London
- 4. Stryer. L. Biochemistry, 4th Edn 1995, W.H. Freeman &Co. NY
- 5. William Foster, Enzymology
- 6. William & Wilson, Techniques in Biochemistry.
- 7. Hall & Rao- Photosynthesis
- Practical Biochemistry- Principles & Techniques 4th Edn Editor Keith Wilson & John Walker.
- 9. Voet D and Voet J. Biochemistry 3rd edition 2004. John Wiley and Sons.
- 10. Doelle. Microbial metabolism.
- 11. Moat& Moat. Microbial Physiology.

MB	– 334: IMMUNOLOGY – I	
I.	Classification of Immunity, Lines of Defense, Cells and Organs of	4
	Immune System	
	1. Formation of blood cells	1
	2. Cells: Granulocytes structure and function - phagocytosis, mast	5
	cells, reticular and endothelial cells, macrophage function, dendritic	
	cells, Lymphocytes – formation, subsets	
	3. Organs:	
	Primary lymphoid organs – a. Thymus – structure, thymic	2
	education, b. Bursa - function	
	Secondary lymphoid organs – structure and function of spleen and	
	lymph node, mucous associated lymphoid tissue; response of	3
	secondary lymphoid organs to antigen, lymphatic system and lymph	
	circulation	
II.	Mediators of Immune System	
	1. Complement system: classical, lectin and alternate pathway,	3
	biological functions of complement activation	
	2. Inflammation, role of mediators in generation of cardinal signs and	
	significance, role of complement system, kinin system and	
	coagulation system in inflammation, Histamines as mediator of	4
	immune inflammation	
IV.	Antigens	6
	1. Factors affecting immunogenecity	
	2. Antigenic determinants and haptens	
	3. Carriers, Adjuvants and biological response modifiers (Microbial	
	and plant origin)	
	4. Thymus-dependent and thymus-independent antigens, Synthetic	
T 7	antigens, Soluble and particulate antigens, autoantigens, isoantigens	
V.	Immunoglobulins	2
	1. Structure of basic unit, chemical and biological properties	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$
	2. Characteristic of domain structure, functions of light and heavy	2
	chain domains3. Antigenic nature of immunoglobulin molecules	2
	 Antigenic nature of immunoglobulin molecules Molecular basis of antibody diversity, immunoglobulin class switch 	22
	over	2
VI.	Hybridoma Technology and Monoclonal Antibodies	
v 1.	1. Preparation, screening and propogation of hybridomas secreting	2
	monoclonal antibodies	2
	2. Applications of monoclonal antibodies	1
VII.	Antigen- Antibody Interactions	9
	a. Antibody affinity and avidity	-
	b. Cross reactivity	
	1. Precipitation reactions: in fluid and in gel, immunoelectrophoresis	
	Agglutination reactions: hemagglutination, bacterial agglutination,	
	passive agglutination and agglutination-inhibition	
	2. Immunofluorescence techniques: direct and indirect, FACS	
	3. ELISA, biotin-avidin system	
	4. RIA	
	5. Western blot technique, Jerne's hemolytic plaque assay	

MB	– 344: IMMUNOLOGY – II	
I.	Major Histocompatibility Complex	5
	1. Structure of MHC in man and mouse	
	2. Structure and functions of MHC class – I and class – II molecules	
	3. Polymorphism of MHC molecules	
	4. MHC antigen typing (microcytoxicity and mixed lymphocyte	
	reaction)	
II.	Cytokines (Interferons, Interleukins and TNFs) – Types and role in	3
	immune activation	
III.	Generation of Humoral Response	
	1. Primary and secondary response kinetics, significance in vaccination	4
	programs	
	2. Antigen processing and presentation (MHC class I and class II	8
	restriction pathways), cell-cell interactions and adhesion molecules,	
	response to super-antigens, role of cytokines in activation and	
	differentiation of B-cells	
II.	Cell Mediated Immunity	8
	1. Activation and differentiation of T cells	
	2. Mechanism of CTL mediated cytotoxicity, ADCC	
	3. Types of Grafts, Allograft rejection mechanisms – first set and	
	second set rejection	
	4. Significance of CMI	
III.	Immunohematology	10
	1. Blood group antigen classification systems	
	2. Biochemistry of blood group substance of ABO system	
	3. ABO and Rh system, inheritance, Bombay blood group	
	4. Laboratory methods of blood group typing, Coomb's test	
	5. Medico-legal applications of blood groups	
	6. Blood banking practices, transfusion reactions	
IV.	Public health immunology	6
	1. Types of vaccines and antisera	
	2. Immunization schedules: principles and schedules in developing and	
	developed countries	
V.	Hypersensitivity	
	1. Immediate and delayed type hypersensitivity	2
	2. Gell and Coomb's classification of hypersensitivity – outline of the	2
	mechanisms with examples	

Reference:

- 1) Anantnarayan R: 1996 Textbook of Microbiology, 5th Edition. Orient Longman

- 2) Roitt, I, M,: 1977: Essential Immunology, 8th Edn. Backwell science
 3) Roitt I.M. 1977: immunology, 3rd Edn. Blackwell science.
 4) Stities, Fudenberg, : 1984 Basic and immunology, 5ht Edn. Lange Medical Publication. USA.
- 5) Weir, D.M.:1983, Immunology, 5th Edn. Longman Singapore Pub.
- 6) Bowry, T.R.,,:1984, Immunology Simplified, ELBS.

- 7) Janis Kuby: Immunology, W.H. Freeman & company, N. Y. 2nd Edn 1992 onwards.
- 8) P. M. Lydyard. A. Whelan and M. W. Fanger. 2000 Instant notes in Immunology. Viva Books Pvt. Ltd New Delhi.
- 9) Shiro Miwa. 1998 Atlas of Blood Cells. Bnykoto Co. Ltd Tokyo, Japan
- 10) A.V. Hoffbrand, J. E. Pettit, P.A.H Moss. 2001, Essential Hematology, 4th Edn, Blackwell Sceince Ltd London

I.	- 335: FERMENTATION TECHNOLOGY – I Strain Improvement:	8
1.	a. Objective of strain improvement	0
	b. Methods for strain improvement (selection of different types of	
	mutants e.g. mutants with altered permeability, auxotrophic	
	mutants, analogue resistant mutants with reference to primary and	
	secondary metabolites	
II	Media optimization:	
	A) Classical approach (Full factorial search)	5
	B) Placket & Burman design	
	C) Response Surface Methodology (RSM)	
III.	Probes for process monitoring and control of fermentation parameters	4
	(temperature, pH, dissolved oxygen, agitation, foam, cell mass, CO ₂ ,	
	NH ₃)	
IV.	Scale-up and Scale-down	4
	a. Objectives of scale-up	
	b. Levels of fermentation (laboratory, pilot-plant and production	
	levels).	
	c. Criteria of scale-up for critical parameters (aeration, agitation,	
	broth rheology and sterilization)	
	d. Scale-down	
V.	Principles and operation of downstream processing:	9
	a. Cell disruption	
	b. Filtration	
	c. Centrifugation	
	d. Liquid-liquid extraction	
	e. Solvent extraction (distillation)	
	f. Preparative ion exchange chromatography	
	g. Drying	
VI.	Quantitation of fermentation products	5
	Physicochemical, biological and enzymatic methods	
VII.	Quality Control (QC) in fermentation processes:	3
	Principles of validation for pharmaceutical industry	
VIII.	Tests used for quality assurance (QA) of finished product	5
	i. Sterility testing	
	ii. Pyrogen testing	
	iii. Ames test and modified Ames test	
	iv. Toxicity testing	
	v. Shelf life testing	
	Process economics	3
IX.	Fermentation economics, Market potential	
	Recurring and non recurring expenditure	
	Introduction to Intellectual Property Rights (IPR)	2

MB	MB – 345: FERMENTATION TECHNOLOGY – II					
I.	Concept of Good Manufacturing Practices (GMP), Good Laboratory					
	Practices (GLP) and Standard Operating Practices (SOP)					
II.	Large scale production of: (using submerged and solid substrate					
	fermentation processes)					
	A. Extracellular metabolites					
	i. Ethanol and alcoholic Beverages (Beer and Wines)	6				
	ii. Vitamins (B12 and Riboflavin)	4				
	iii. Antibiotics (Penicillin and Streptomycin)	6				
	iv. Amino acid - Glutamic acid	2				
	v. Organic acids (Citric acid, Vinegar and Lactic acid)	6				
	B. Enzymes (Amylase, Lipases, Esterases and Restriction enzymes)	6				
	C. Vaccines (Polio, Tetanus and Rabies) and Immune sera	6				
	D. Biomass based products					
	i. Biopesticides (Thuricide and <i>Trichoderma</i>)	3				
	ii. Yeast: SCP, Baker's and Distiller's yeast	2				
	E. Milk products: Cheese and Yogurt	3				
	F. Microbial transformation products: Steroids	2				

Reference Books:

- 1. Casida, L. E., 1984, Industrial Microbiology, Wiley Easterbs, New Delhi
- 2. Peppler, H. L 1979, Microbial Technology, Vol I and II, Academic Press.
- 3. Stanbury, P. F. and Whittaker, A. (1984) Prionciples of Fermentation technology, Pergamon press
- 4. Prescott. S.C and Dunn, C. G., 1983 Industrial Microbiology, Reed G. AVI tech books.
- 5. A. H. Patel. (1985), Industrial Microbiologu, Macmillan India Ltd.
- 6. Indian Pharmacopia and British Pharmacopia (Latest Edn).

B – 336: Applied Microbiology – II (Food and Dairy)	
Dairy Microbiology	
A. Milk: Definition, Composition and Types of Milk (skimmed, toned and homogenized. Concept of clean milk (as per National Dairy development Board (NDDB) norms.	2
B. Microbial analysis of milk	5
i. Microflora of raw milk.	5
ii. Dye reduction test (using methylene blue and resazurin)	
iii. Total bacterial count.	
iv. Brucella ring test and tests for mastitis.	
v. Somatic cell count	
C. Spoilage of milk	5
i. Succession of microorganisms in milk, leading to spoilage.	-
ii. Color and flavor defects	
iii. Sweet curdling	
iv. Stormy fermentation	
v. Ropiness	
D. Pasteurization of milk	5
i. Methods of Pasteurization – LTH, HTST, UHT	Ū
ii. Phosphatase test for determination of efficiency of	
Pasteurization	
Food Microbiology	
A. Food spoilage	
i. Chemical and physical properties of food affecting	3
microbial growth (intrinsic and extrinsic factors)	
ii. Sources of spoilage causing micro-organisms	3
iii. Spoilage of	
a. Meat and Poultry products	
b. Bread	
c. Fruits and Vegetables	
d. Eggs	
e. Canned fruits	
B. Food preservation	7
i. Principles of food preservation	
ii. Use of chemicals and antibiotics in food preservation	
iii. Canning	
iv. Dehydration	
v. Thermal destruction of bacteria - Use of low temperature and	1
high temperature.	
vi. Determination of TDP, TDT, D, F, and Z values. vii. Use of radiations	
Principles of Hazard Analysis and Critical Control Points (HACCP -	
Hazard Analysis and Critical Control Points) – transfered from	
Fermentation Technology course	
Introduction to Tetrapack technology	
C. Microbial food poisoning and food infection	9
Food poisoning with reference to sources and prevention of the	
following:	

b. Campylobacter	
c. Clostridium botulinum	
d. Aspergillus flavus	
D. Organisms causing food infection with reference to their sources and	3
prevention of the following:	
i. Salmonella	
ii. Vibrio parahemolyticus	
E. Fermented foods	6
i. Significance of fermented foods (increase in shelf life	
and probiotic)	
ii. Starter cultures for curd preparation and fermentation of	
idli batter	

MB	- 346: APPLIED MICROBIOLOGY - II (SOIL AND AGRICULTURE)							
I.	Soil Microbiology							
	A. Soil microorganisms, composition and types of soil.	2						
	B. Rhizosphere microflora and its role in the rhizosphere							
	C. Role of microorganisms in composting and humus formation							
	1. Carbon, Nitrogen, Phosphorus and Sulfur cycles in soil							
	2. Degradation of cellulose, hemicelluloses, lignin and pectin							
II.	Plant Pathology							
	A. Classification of disease based on symptoms (with one example of	3						
	each disease): canker, powdery mildew, downy mildew, rust. smut, wilt,							
	spots, mosaic galls and rots							
	B. Epidemiology of plant diseases	2						
	C. Methods of plant disease control	5						
	i. Eradication							
	ii. Chemical control							
	iii. Biological control (employing bacterial and fungal cultures)							
	iv. Integrated pest management							
III.	Bioinoculants							
	A. Biochemistry of symbiotic and non- symbiotic nitrogen fixation	2						
	B. Phosphate solubilization and Potassium mobilization	2						
	C. Methods of application (liquid and carrier based)	2						
	D. Comparison of bioinoculants with chemical fertilizers	1						
	E. Methods of preparation – liquid and carrier based	2						
IV.	Anaerobic digesters (only UASB)	8						
	i. Raw materials							
	ii. Organisms involved and their activity							
	iii. Cultivation of Methanogens							
	iv. Biochemical mechanisms of gas production							
	(Biomethanation)							
	v. Applications of biogas (Methane)							
V.	Microbial leaching of copper and iron from low grade ores	2						
VI.	Bioremediation and bioagumentation of pesticides polluted sites	3						

REFRENCES:

- 1) De.S:1993. Dairy Bacteriology, Oxford University press, New Delhi.
- 2) Sukumar. De 1980. Qutlines of Dairy Technology Oxford University Press Delhi.
- Ecles, C.H & Macy, combes, 1973, Milk and milk products, 4th Edn, TMH.
- 4) Frazier, W.C. and Westhoff, D.C. 1988 . Food Microbiology, 3rd Edn TMH.
- 5) Jay, James M. 1978. Modern food microbiology,'D' van. Nostrne. NY.
- 6) Banwari G. J. 1987 Basic Food microbiology, CBS Publisher and distributors, New Delhi.
- 7) Mexander .M. 1977 Introduction to soil microbiology, John Wilery NY.
- 8) Subarao, N.S. 1977. Soil Microorganisms. Oxford. IBH. New Delhi.
- 9) Dube. H.C. and Bilgrami. K.S.1976 Text book of modern pathology. Vikas publishing house. New Delhi.
- 10) Rangaswami. G. 1979. Recent advances in biological nitrogen fixation. Oxford and IBH. New Delhi.

MB – 347: PRACTICAL COURSE – 1: APPLIED MICROBIOLOGY				
1.	Screening and isolation of antibiotic producing organisms (actinomycetes	2		
	using giant colony method).			
2.	Isolation and identification of lactic cultures upto genus level	2		
3.	Laboratory scale fermentation, estimation, product recovery and yield	3		
	calculation of Ethanol / organic acid (any one).			
4.	Quality assurance tests:			
	A. Antibiotic and growth factor assay (agar gel diffusion technique)	2		
	B. Sterility testing of non-biocidal injectables	1		
5.	MIC and MBC of antibacterial compounds	2		
6.	Tests for milk and dairy products	5		
	Phosphatase test; MBRT test; Test for mastitis; Milk fat estimation;			
	Standard Plate Count (for either milk or any milk product such as milk			
	powder), Somatic cell count			
7.	Enrichment, isolation, preparation and application of bioinoculants	4		
	(Azo-rhizo, blue green algae (cyanobacteria), phosphate solubilizer - any			
	one).			
	Soil analysis (NPK, moisture and pH)			
8.	Isolation and identification of Xanthomonas citri from infected sample	1		
9.	Microscipical examination of rust and smut infections of plants	1		
	(Demonstration only)			
10.	Slide culture technique for actinomyctes	1		
11.	Visit to a Dairy / Fermentation industry / Agriculture college	1		

MB – 348: PRACTICAL COURSE – 2: BIOCHEMISTRY AND GENETICS			
1.	Determination of absorption spectra and molar extinction co-efficient	1	
	(colorimetry/spectrophotometry)		
2.	Clinical Biochemistry	3	
	Estimation of blood sugar, blood urea, serum cholesterol, serum proteins		
	and albumin (<i>any three</i>)		
3	Qualitative analytical tests for proteins and carbohydrates	2	
4	Preparation of buffers	1	
5	Paper chromatography	1	
6	Quantitative biochemical techniques	3	
	a. Estimation of total carbohydrates (Phenol-sulfuric acid / Anthrone		
	method)		
	b. Estimation of reducing sugar by DNSA method		
	c. Estimation of proteins by Folin Lowry / Bradford method		
4.	Enzyme production	5	
	a. Screening of amylase producing organisms		
	b. Production of amylase using these isolates		
	c. Precipitation of amylase from fermentation broth		
	d. Determination of specific activity of crude and purified amylase		
5.	Isolation and enumeration of bacteriophage	2	
6.	UV survival curve.	2	
	Isolation of mutants by replica plate technique		
7.	Bacterial DNA isolation and detection (Demonstration)	2	
8.	Visit to a research institute involved in biochemical / biotechnology	1	
	research		

MB	- 349: PRACTICAL COURSE - 3: DIAGNOSTIC MICROBIOLOGY A	ND
IMM	IUNOLOGY	
1.	Clinical microbiology	5
	Physical, chemical and microscopic examination of clinical samples –	
	urine, stool and pus.	
	Isolation, identification of pathogens from clinical samples (urine, stool,	
	pus) of E. coli, Salmonella spp., Pseudomonas spp., Proteus spp.,	
	Klebsiella spp., Shigella spp., Staphylococcus, Streptococcus spp., etc.	
	(for identification use of keys as well as Bergey's Manual is	
	recommended)	
	Antibiotic sensitivity testing of the isolates	
2.	Study of growth characters of isolated pathogens on following media:	2
	Mannitoal salt agar, Wilson Blair agar, Salmonella Shigella agar, Glucose	
	azide medium, Cetrimide agar, Tetrathionate broth, Selenite F broth and	
	TSI agar	
3.	Demonstration of permanent slides of following parasites:	1
	i. Entamoeba histolytica	
	<i>ii. Ascaris</i> spp.	
	iii. Plasmodium spp.	
4.	Epidemiological survey	3
	Report including statistical analysis and graphical representation using	
	computers	
5.	Hematological tests:	4
	i. Blood group typing for ABO and Rh systems	
	ii. Blood cross-matching	
	iii. Estimation of hemoglobin (Acid hematin and cyanmethemoglobin	
	method)	
	iv. ESR and PCV determination, Calculation of haematological	
	indices.	
6.	Agglutination test (Widal test – rapid)	1
7.	Immunoprecipitation (Ouchterlony technique)	1
8.	White blood cell differential counts from peripheral blood	2
9.	Counting of blood cells using counting chambers	3
10.	Demonstration of egg incolution technique	1
11.	Demonstration of serum protein separation by electrophoresis	1
12.	Visit to blood bank	1

University of Pune

Equivalences for the old Courses with New courses in Microbiology

Semester III					Seme	ester IV	
New Course		Old Course		New Course		Olo	d course
Paper	Course Title	Paper	Course Title	Paper	Course Title	Paper	Course Title
MB 331	Medical Microbiology - I	MB 331	Medical Microbiology - I	MB 341	Medical Microbiology - II	MB 341	Medical Microbiology - II
MB 332	Genetics & Molecular Biology - I	MB 332	Genetics & Molecular Biology - I	MB 342	Genetics & Molecular Biology - II	MB 342	Genetics & Molecular Biology - II
MB 333	Enzymology	MB 333	Enzymology	MB 343	Metabolism	MB 343	Metabolism
MB 334	Immunology -I	MB 334	Immunology -I	MB 344	Immunology -II	MB 344	Immunology -II
MB 335	Fermentation Technology - I	MB 335	Fermentation Technology - I	MB 345	Fermentation Technology - II	MB 345	Fermentation Technology - II
MB 336	Food & Dairy Microbiology	MB 336	Food & Dairy Microbiology	MB 346	Soil & Agricultural Microbiology	MB 346	Soil & Agricultural Microbiology

T. Y. B. Sc. Microbiology

Practical Courses

New Course		Old Course	
Paper	Course title	Paper	Course title
MB 347	Practical course – I	MB 347	Practical course – I
	Applied Microbiology		Applied Microbiology
MB 348	Practical course – II	MB 348	Practical course – II
	Biochemistry & Genetics		Biochemistry & Genetics
MB 349	Practical course – III	MB 349	Practical course – III
	Diagnostic Microbiology & Immunology		Diagnostic Microbiology & Immunology

ATKT Rules-As earlier