Revised Syllabus 2014

M.Sc. II: Inorganic Chemistry

Semester III (Each course of 4 credits)

Course	Title	No. of Lectures
CHI326	Organometallic Chemistry & Homogeneous catalysis	48
CHI330	Inorganic Reaction Mechanism, photochemistry and Magnetic Properties of Coordination Compounds	48
CH-331	Physical Methods in Inorganic Chemistry	48
CHI332	Bioinorganic & Inorganic medicinal chemistry	48

Each course has 12 contact hours

Semester IV (Each course of 4 credits)

Course	Title	No. of Lectures
CHI-430	Inorganic Polymers and Heterogeneous Catalysis	48
CHI-431	Material science – I: Inorganic Solid state materials	48
CHI-432	Material science – II: Nanomaterials	48
CHI-445	Inorganic Chemistry Applications in Industry, Environment and Medicine	48

Each course has 12 contact hours

M.Sc. II: Inorganic Chemistry Practical (Each course of 6 credits)

Course	Title
CHI387	Experiments& computer applications in Inorganic
	Analysis
CHI388	Inorganic Instrumental analysis and synthesis of
	inorganic materials
CHI488	Project work/Extended experiments.

Equivalence of previous Syllabus

	New Syllabus 2014 Pattern		Old Syllabus 2008 Pattern
CHI-326	Organo metallic Chemistry	CH-326	Organometallic compounds of
CIII-520	& Homogeneous catalysis	CII-520	Transition metals &
	& Homogeneous catalysis		
CIII 220	In a second Day officer	CII 220	Homogeneous catalysis
CHI-330	Inorganic Reaction	CH-330	Coordination Chemistry,
	Mechanism, Photochemistry		Magnetism & Reaction
	and Magnetic Properties of		Mechanism
	Coordination Compounds		
CHI-331	Physical Methods in	CH-331	Structural Methods in
	Inorganic Chemistry		Inorganic Chemistry
CHI-332	Bio-inorganic chemistry	CH-332	Bioinorganic Chemistry:
			Inorganic Elements in the
			Chemistry of life
CHI-430	Inorganic Polymers and	CH-430	Inorganic Solids &
	Heterogeneous Catalysis		heterogeneous catalysis
CHI-431	Material science – I: Solid	CH-431	Materials Science
	state and other Inorganic		
	materials		
CHI-432	Materials Science-II:		
	Nanomaterials		
CHI-445	Inorganic Chemistry	CH-445	Inorganic Applications in
	Applications in Industry,		Industry, Biotechnology &
	Environment and Medicine		Environmental Chemistry
CHI-387	Experiments & computer	CH-387	Experiments & computer
	applications in Inorganic		applications in Inorganic
	Analysis		Analysis
CHI-388	Practical Course – II	CH-388	Practical Course – II
CHI-488	Projects/Extended	CH-488	Projects/Extended Practicals
	Practicals in Inorganic		in Inorganic Chemistry
	Chemistry		

M. Sc. - II Inorganic Chemistry Semester – III

CHI-326

Organo metallic Chemistry & Homogeneous catalysis		
Organo metallic Chemistry	24L + 6 T	
1. Introduction & Recapitulation		
d-block metal carbonyls,		
2. Sigma complexes. :Synthesis, bonding, properties and applications.		
hydrocarbyl compounds,		
3. Metal-Carbon multiple bonded compounds		
Carbene and carbynes		
4. π -complexes		
Alkenes		
Di and polynes		
5. n ⁿ CnRn :Carbocyclic polyenes: Synthesis, bonding, properties and applications		
Allyls		
Pentadienyls		
Cyclobutadienes		
Cyclo pentadienyls		
Cycloheptetrienyls		
Arenes		
6. Phosphine complexesSynthesis, bonding, properties and applications		
7. Metal-metal bonds		
Transition metal atom clusters		
Carbonyl polymers		
8. Transition metal organo-metallics in organic synthesis.		
As Electrophiles		
Nucleophiles		
Activating agents		

Protecting agents

9. Fluxional Behaviour of organometallic compounds

Homogeneous Catalysis:

- Introduction to catalysis .Basic principles, Definition of activity& selectivity catalysis, homogenous vs. heterogeneous catalysis. Importance of homogenous catalysis in synthesis of high value chemicals
- Characteristics of central metal atom &influence of attached ligands on catalytic activity Important reaction types: oxidative addition, reductive elimination, migratory insertion, beta hydride elimination.
- 3. Tollman catalytic cycles

Use of spectral techniques for identification of intermediates. (IR, NMR),

- 4. Reactions Of olefins.
 - a. Polymerisation: Catalytic cycle for alkene Polymerisation
 Metallocene catalysts-structure, special features advantages and mechanism of action.
 - b. Oxidation including catalyst separation in homogeneous catalysis

Fenton Reaction-FeBr3/H2O2

Metal catalysed liquid phase oxidation

Epoxidation

Biphasic catalysis -oxidation

- c. C-C coupling (Cativa process, Heck, Suzuki, Negeshi and cycloaddtion reactions)
- 5. Metathesis
- 6. Asymmetric catalysis

- 1. Organotransition Metal Chemistry Anthony F. Hill, Royal Society of Chemistry, Tutorial Chemistry Text, 2002.Chapters1-7.
- Organometallics: A concise Introduction, Ch. Elshebroicn and A. Salzer, VCH, chapters 12-16
- 3. Organotransition Metal Chemistry: Applications to Organic Synthesis, S.G. Davies, Permagaon 1982.
- 4. Inorganic Chemistry 3rd edn D.F. Shriver and P.W. Atkins, Oxford University Press, 1999, Chapter 16.
- 5. Organometallic Chemistry -R.C. Mehrotra and A. Singh, 1992, Wiley
- 6. Principles of Organometallic Chemistry, P. Powell, Chapman & Hall
- 7. Organometallic Compounds, Morries, Sijlirn, IVY Publication House
- 8. Organometallics in Organic Synthesis Swan & Black
- 9. Organometallic Chemistry E.J. Elias and Gupta
- 10. Hompgeneous Catalysis G.W.Parshall

CHI-330

Inorganic	Reaction	Mechanism,	Photochemistry	and	Magnetic	Properties	of
Coordinati	on Compou	ınds				48 L + 1	2 T

Inorganic Reaction Mechanism:

Types of mechanisms, substitution in square planar and octahedral complexes. Electron transfer reaction, Inner and outer sphere reactions, Isomerisation reactions

Reactions of coordinated ligand

Non-chelate forming reactions, reactions of donor atoms (halogenations of coordinated nitrogen atoms, alkylation of coordinated S, N, N atoms, solvolysis of coordinated P atom) Reactions of donor atoms (nucleophilic and electrophilic behaviour of ligands) Chelate ring forming reactions (reactions predominantly involving thermodynamic template effect, kinetic effect) Chelate modifying reactions

Photochemistry:

Photochemical reactions, Prompt and delayed reactions, quantum yield, recapitulation of fluorescence & phosphorescence, phtotochemical reactions irradiating at d-d and CT band Transitions in metal-metal bonded systems, photochemical reactions involving chlorophyll Kinetics of excited state, processes

Other reaction types – oxidative addition, reductive elimination, methyl migration and CO insertion 2L

Magnetic Properties

- i. Recapitulation of determination of R-S terms of $d^2 \& p^2$ transition metal
- ii. Derivation of Van Vleck's expression. Quantisation of orb ital contribution in d¹ ion &quenching in cubic crystal field
 4L
- ii. Magnetic moments based on crystal field ground term, perturbation theory and its application, spin orbit coupling operator for magnetic susceptibility and magnetic moments of T terms &A,E terms.
- iii. Anomalous magnetic moments in magnetically dilute and concentrated system in various symmetrical environments of coordination complexes. 3L
- iv. Mixed valence compounds.

Books:

 Inorganic Chemistry – D.F. Shriver, P.W. Atkins, C.H. Lamgford – Oxoford, 2nd Edition, 1994.

12L

8L

10L

16L

1L

- Introduction to Inorganic Chemistry K.F. Purcell & J.C. Kotz, Saunders, 1990 Chapter 14.
- 3. Comprehensive Coordination Chemistry, Vol. I, G. Wilkinson (Ed.), Wiley, NY, 1967.
- Mechanism of Inorganic Reactions in Solution An Introduction, D. Benson, McGraw-Hill, Chapter 15
- 5. Inorganic Chemistry, J. Huheey, E.A. Kerter & R.L. Kerter, 4th Edn., Harper Collins, 1993
- 6. Mechanism of Inorganic Reactions- C.F. Basselo, R.G. Pearson, Wiley, NY
- 7. Inorganic Chemistry Messler and Tarr Pearson Publishers
- 8. Inorganic Chemistry Harold Butler
- Magnetism and Transition Metal Complexes F.E. Mabbs and D.J. Machin, Chapman & Hall, London, 1973.

CHI-331	4 credits
Physical Methods in Inorganic Chemistry	48L + 12T
Principles, Instrumentation & applications of the following techniques	
Thermal techniques (TG, DTA, DSC)	12L
Cyclic Voltametry	8L
Electron Spin resonance spectroscopy	10L
Mossbauer spectroscopy	6L
X-Ray Diffraction Powder & Single Crystal	8L
X-ray Photoelectron Spectroscopy	4 L

Problems based on above techniques should be solved.

- Structural methods in Inorganic Chemistry E.A.V. Ebsworth, D.W.H. Rankin & S. Cradock, Blackwell Scientific Publication, 1987.
- 2. Physical Methods for Chemists-R.S. Drago, (2nd edition, Saunders)
- 3. Instrumental methods of Chemical Analysis Chatwal & Anand
- Laboratory Techniques in Electro analytical Chemistry edited by P.T. Kissinger and W.R. Heinman (1984) M. Dekker vinc (USA)
- 5. Dennis H. Evans, Journal of Chemical Education, vol.60, pp290 (1983).
- 6. P.T. Kissinger and W.R. Heinmann, Journal of Chemical Education, vol.60, pp702 (1983).
- 7. J.J. Van Benschoten, Journal of Chemical Education, vol.60, pp772 (1983).

8.	Crystallography and its applications – L.S. Dent Glasser (Van Nostrand, 1977)
	Introduction to X-Ray Powder Diffractometry- R. Jenkins and Snyder 1996, Wiley (NY)

4 credits

Bio-inorganic chemistry	48L + 12T
1. Recapitulation of Biological roles of Metals and ligands	1L
*Structure, function and biochemistry of enzymes containing following metals	:
i) Zinc	6L
Zinc Fingers, Carboxy peptidase, Carbonic anhydrase	
ii) Copper	6L
Type I, Type II, Type III	
Blue Proteins Azurins, Plastocynins & Blue Oxidases	
Model compounds of Blue copper proteins	
Non Blue Proteins eg. Tyrosinase, Galactose oxidase, SOD	
iii) Cobalt	4L
Vit B12 co enzymes& model compounds	
Actions of Cobalamines	
Adenosylcobalamine as a coenzyme	
Ribonucleotide reductase	
Methylcobalamine as cofactor	
iv) Molybdenum	3L
Mo-cofactors	
Antagonism between Cu&Mo	
Hydroxylase	
v) Manganese	6L
vi) Non-haem iron	6L
vii) Biochemistry of chromium and Vanadium	3L
Vanadium proteins including bromoperoxidases	
Glucose Tolerance Factor	
Vanadium Nitrogenase	
2. Transition metal complexes as Chemical Nucleases	
3. Leaching of Precious metals by micro-organisms (different bacteria)	3L
4. Radiopharmaceuticals and MRI contrast reagents.	10L

Books:

CHI-332

- 1. Bioinorganic Chemistry: A ShortCourse-RosetteM.Malone3 Wiley Interscience, 2002.
- 2. Biological Inorganic Chemistry-An Introduction, Robert Crichton, Elsevier Science, 2007.
- 3. The biological Chemistry of the Elements: The Inorganic Chemistry of Life–J. J. R. Fraustoda Silva and R. J. P. Williams. Clarendron Press, Oxford, 1991.
- 4. Bioinorganic Chemistry: Inorganic elements in the Chemistry of life., An Introduction and Guide—Wolfgang Kaim, Brigille Schwedrski John Wiley and sons, 1994.
- 5. Principles of Bioinorganic Chemistry –S.J. Lippard and J.M.Berg, University Science Books, 1994.
- The Biological Chemistry of the Elements: The Inorganic Chemistry of Life– Silva, J. J.
 R. Fraustoda and R. J. P. Williams; 2nd Ed. Oxford University Press, 2012.

SEM -IV

CHI - 430 Inorganic Polymers and Heterogeneous Catalysis

Descriptive chemistry of Heterogeneous Catalysis

their applications in catalysis.

- Definition of catalysis, Classification of Catalytic systems, adsorption of molecules on solid surfaces, PE curves for adsorption, descriptive chemistry of chemisorption on metals, chemisorption and catalysis by metals-semi quantitative aspects, catalysis by supported and un supported bimetals, adsorption and catalysis on semiconducting oxides, selective oxidation of hydrocarbons, Different types of reactors.
- Zeolite compounds and heterogenous catalysis 14L
 Introduction to meso-porous µ porous materials Zeolites,
 Definition, types, primary and secondary building blocks, characteristics of zeolites and

XRD, SEM and other spectral techniques, FT-IR, Solid state NMR, Surface area by BET method, porevolume & pore structure, origin of Bronsted acidity & basicity in zeolites, techniques for determination of acidity, temperature programmed desorption of bases

- 3. Photocatalysis using semiconducting oxides. **4**L **3**L 4. Heterogenous catalysis using intercalation compounds. 5. Heterogenous catalysis using Pervoskite related oxides **4**L **4**L 6. Heterogenous catalysis using oxides with Scheelite structure Ideal crystal structure, physical properties, oxidation of olefins, mechanism for catalysis by BiMoO4, oxidation of propylene to acrolein, amino propylene to acrylonitrile, Role of bismuth in catalysis 7. Immobilisation of transition metal complex catalyst on Inorganic support: Anchored 3L catalysts. **3**L 8. Industrial applications of heterogeneous catalysts **4**L 9. Inorganic Polymers: polysiylenes, SN, PN compounds.
- Heteropolyacids, polyoxoanions-Molybdates, Tungstates etc. & their use as catalysts in organic synthesis.
 6L

- 1. Heterogeneous catalysts principles and applications G. C. Bond
- 2. Introduction to Zeolite Science and Practice H. Van Bekkum, E. M. Flanigen, P. A. Jacobs and J. C. Janson, Elsevier, Amsterdam, 2001.

- 3. Catalysis Principles and applications B. Vishwanath, S. Shivshankar and A. V. Ramaswamy, Narosa Publishing House, New Delhi, 2004.
- 4. Advanced Materials in Catalysis J. J. Burton, R. L. Garten, Academic Press, New York, 1977.

CHI-431

4 credits

Material science – I: Solid state and other Inorganic materials 48L + 12 T Solid state materials

- 1. Crystal defects and Non stoichiometry, Diffusion in solids, phase transformation in solids, solid state reactions and crystal growth. Preparation methods of solids. 2L
- 2. Magnetic materials

Atomic magnetism and solids, type of magnetic materials, exchange interactions, hysteresis loop and their classification, calculation of magnetic moment from saturation magnetisation, magnetic domains, examples of magnetic materials, soft & hard ferrites, structure & magnetic interactions in spinel, garnet hexagonal ferrites, application of magnetic materials

- 3. Superconducting materials Definition, superconductivity, critical temperature, critical field, BCS theory, properties & classification of superconductors, high Tc superconductors, examples with structure and applications, fullerenes, intermetallic superconductors, synthesis, applications
- 4. Ceramic materials 7L Classification, dielectric properties, polarisation properties, piezo, pyro and ferroelectric properties, sol-gel process, examples and applications, oxide, carbide, boride, nitride
- **6**L 5. Composite materials Definition, glass transition temperature, fibres, concrete and asphalt materials, polymer composites, application
- 6. Biomaterials:

Definition, Dense Hydroxyapetite Ceramics, bioactive glasses, bioactive glass ceramics, bioactive Composites. 6L

7. Cementitious Materials

Difference between Blended & Non Portland cement

- High Alumina cement
- **Phosphate Cements**
- Calcium sulphatoaluminate cement

10L

10L

Chemicals in Cement Hydration, hydration process, set retarders and accelerators, plasticisers, slip-casting processing Applications.

- Solid state Chemistry: An Introduction L.E. Smart & E.A. Moore, CRC, Taylor & Francis, 3rd Edn.
- 2. Materials Science & Engineering V. Raghvan, 2nd Edn.
- 3. Introduction to Solids L.V. Azarroff, 2nd Edn. 1980
- 4. Elements of materials science and engineering Van Vleck, 5th Edn.
- 5. Insight to Speciality Inorganic Chemicals D. Thompson, Royal Society of Chemistry, 1995.

CHI-432 Materials Science-II: Nanomaterials	4 credits 48L + 12T
1. Introduction to Nanomaterials	2L
2. Synthesis of nanomaterials (methods such as solvothermal, sonochemical)	8L
a. Oxide Nanoparticles	
b. Zero valent metal nanoparticles	
c. Zero valent Bimetallic nanoparticles	
d. Semiconducting sulphides & Selenides Nanotubes, nanowires & nanowires	
3. Properties and Structures	10L
a. Optical and electrical properties	
b. Electronic structure & spectral properties of semiconductor nanocrystals.	
c. Application of Raman spectroscopy, SEM, TEM for morphology and struct	ure10L
4. Photochemistry and Electrochemistry of nanoassemblies	12L
5. Nanoporous materials	6L
6. Biological Applications (targeted drug delivery)	6L
7. Applications as sensors	4 L
BOOKS	
1. The Chemistry of Nanomaterials edited by C.N.R.Rao, A.Muller, A.K	.Cheetham—

- 1. The Chemistry of Nanomaterials edited by C.N.R.Rao, A.Muller, A.K.Cheetham— Wiley-VCH Verlag GmbH & co. Volumes 1&2
- WTEC Panel Report on Nanostructure Science and Technology edited by Richard Siegel, Evelin Hu7M.C.RoCo—Kluwer Academic Publishers, Boston/London.
- 3. Nanomaterials by Dr. Sulbha Kulkarni.

- 4. Nanotechnology, G. Timp; Springer, AIP Press, 2012.
- 5. Nanoscopic Materials Size Dependent Phenomenon, E. Roduner, RSC Publishing 2006.
- Nanochemistry A Chemical Approach to Nanomaterials, G. A. Ozim, A. C. Arsenault, L. Cadematiri, RSC Publishing 2009.

CHI-445

4 credits

Inorganic Chemistry Applications in Industry, Environment and Medicine 48L + 12T (Any two sections -2 credits each)

Section A

Dyes and Pigments

Introduction, naturally occurring Plant & animal pigments. Synthetic food pigments such as Sunset yellow, Allura etc. Pigments in plants_-raw materials for paints. Physical properties of paints, manufacturing process of Pigments in brief. Titanium dioxide and Zinc oxide

Electrochemical Applications

Introduction to classical electro deposition of metals. Advances in electrochemical industrymodification of electrode surface, preparation & properties of modified electrodes eg, Nafion modified electrode, PVP modified electrode. Applications such as Electro catalysis, ion selective electrodes.

Section **B**

Application of Metal ions in medicine	2 credits
1. Overview	3L
Introduction, Metal Ions in diseases, Use of chelating agents, Metalloproteins	s as drug
targets, Modes of binding with DNA, Metal complexes as Chemotherapeutic	drugs and
diagnostic agents.	
2. Transition metal complexes as chemical nucleases	4 L
Interaction of metal complexes with DNA & RNA, Reactions of metal complexes	exes with
DNA, Nuclease activity of Cu-(o-phen) ²⁺	
3. Biomedical uses of Lithium	3L
Chemistry of Lithium, Distribution in the body & cells, Biochemistry of Lithi	um and
lithium isotope	
4. Bismuth in Medicine	3L
Proportion of Dismuth Di(III) & Di(V) compounds Dismuth in modicing Usl	liachastan

Properties of Bismuth, Bi(III) &Bi (V) compounds, Bismuth in medicine, Helicobacter Pylori bacterium, Bismuth citrate complexes, Bismuth complexes with Biomolecules

12L

Bismuth complexes with oxygen containing molecules, thiolate ligands, Bi(III) complexes with metallothionene, transferring and enzyme enhibition

- 5. Cis-platin based anticancer drugs Mode of action, mechanism
- 6. Gold complexes

Introduction, Crysotherapy, Gold Chemistry – Au(I), Au(III) complexes, redox potentials In-vivo metabolism, ligand displacement, Antitumor, anti-HIV, anti-arthritis

7. Vanadium as possible insulin modifiers 4L
 Introduction, Characterisation of insulin mimetic effect, Sites of action of vanadium, toxicological considerations, and improved tissue uptake

Books:

- 1. Uses of Inorganic Chemistry in Medicine Ed. Nicholas. P. Farrel
- 2. Metal Complexes as drugs and Chemotherapeutic agents.
- 3. The biological Chemistry of the Elements: The Inorganic Chemistry of Life–J. J. R. Fraustoda Silva and R. J. P. Williams. Clarendron Press, Oxford, 1991.
- 4. Bioinorganic Chemistry: Inorganic elements in the Chemistry of life., An Introduction and Guide—Wolfgang Kaim, Brigille Schwedrski John Wiley and sons, 1994.
- 5. Principles of Bioinorganic Chemistry –S. J. Lippard and J. M. Berg, University Science Books, 1994.

Section C

Environmental Chemistry

- Introduction to waste water Analysis; Specification of treated waster water for disposal into surface water, Screening chamber, Grit Chamber, Oil& Grease removal. 3L
- Waste water engineering for biological treatment: Principle, role of microorganisms, ecosystem, designing of biological unit
 7L
 - a. Stabilisation pond
 - b. Aerated lagoon
 - c. Trickling filters
 - d. Anaerobic treatment
- Biotechnology& Wastewater Management: Applications of Biotechnology for the treatment of:
 9L
 - a. high strength waste.
 - b .Primary and secondary sludge
 - c. Phenol & cyanide removal

2 credits

4L

- d. Solid phase extraction
- Energy sources for future: Solar energy, energy from biomass, wind towers, geothermal etc.
 3L
- 5. Bioaccumulation of Toxic metals: Lead, mercury, cadmium, arsenic. 3L

- 1. Environmental Chemistry by A.K.Bagio
- 2. Principles of Environmental Chemistry by James Girard Bartlett Publishers
- 3. Waste Water Engineering by Calf& Eddy
- 4. Waste Water treatment for pollution control by Arceivala
- 5. Principles of water quality Control by T.H.YTebbut
- 6. Manual on Sewage & Sewage treatment, Ministry of Works, New Delhi.

INORGANIC CHEMISTRY PRACTICALS

CHI-387

Minimum contact hours - 120

Experiments & computer applications in Inorganic Analysis

A. Analysis of the following samples: 20 hrs a. Two Ore -3 components b. Alloy-3 components 6 hrs c. Cement-3 components 6 hrs d. Manganese from Tea leaves-1component 3 hrs e. Vit -C 1-component 3 hrs f. Flamephotometric Analysis 6 hrs g. Ion Exchange analysis of cations/anions 4 hrs h. Copper from fungicide 3 hrs 4 hrs **B.** Statistical Analysis Contact hrs for assessment 10 hrs

6 credits

CHI-388

Practical course - II	6 credits		
Part A: Inorganic Instrumental analysis and Computer applications			
Magnetic Susceptibility - 2samples	12 hrs		
Thermogravimetric studies - 2samples	8 hrs		
Catalytic hydrogenation	3 hrs		
Kinetics of Aquation/Isomerisation - 2experiments	8 hrs		
Photochemical reactions using Nanoparticles	4 hrs		
Table work – Four techniques	8 hrs		
IR, ESR, XRD, CV, NMR			
Metal DNA interactions (Viscosity & spectrophotometry)	9 hrs		
Synthetic Copper Oxidase (Copper catalysed oxidation of			
2,6,disubstituted Phenols.)	4 hrs		
Cyclic Voltametric study of i)Potassium ferricyanide ii) Ferrocene	8 hrs		
Part B			

Preparation of Inorganic compounds

Metal complexes

Trans-dichloro-bis(ethylene diamine) cobalt (III) chloride Mn (Salen) Mn (acac)₃ Hg [Co(SCN)₄] Cu(o-phen)₂ Hexa thiocyanato chromate Tris- triphenyl phosphine Nickel (II)sulphate. Chloroaquo tetraamino cobaltic sulphate. Fe (DTC)₃ **Synthesis of Solid State Materials** Zinc Ferrite NiO Nickel Ferrite Nano particles of MnO₂

CHI-388

6 credits

Project work /Extended Practicals in Inorganic Chemistry

A. Preparation and Purity of following complexes of

- 1. DMG
- 2. 8-hydroxy quinoline
- 3. Salicylaldoxime
- 4. Thiourea

With Copper, Nickel, Iron, Chromium & Manganese (any three metals)

B: Structural determination of above complexes using following techniques

- i) UV-Visible spectroscopy
- ii) Magnetic susceptibility
- iii) Thermogravimetric analysis
- iv) IR
- v) Solution conductivity

C. Introduction to literature survey