University of Pune

S.Y.B.Sc. Environmental Science Revised Syllabus 2014-15 Course Design

Paper	Semester	Course	Course Title	Marks Distribution			
		No.		Internal	University	Subtotal	Total
Ι	Ι	EVS – 201	Ecology & Ecosystem.	10	40	50	100
	II	EVS – 201	Biological Diversity & its Conservation.	10	40	50	100
П	Ι	EVS - 202	Natural Resources, Energy & their Management.	10	40	50	100
	II	EVS - 202	Pollution Control & Environmental Technology.	10	40	50	100
III	I & II	EVS – 203	Practical Course Based on EVS - 201 & EVS - 202	20	80	100	100

EQUIVALENCE

Revised C	ourse (201	14-15)		Previous C	Course (200	09-10)
Semester	Course	Course Name		Semester	Course	Course Name
	Code				Code	
Ι	EVS:	Ecology &		Ι	ENV:	Ecology &
	201	Ecosystem			201	Ecosystem
Ι	EVS:	Natural Resources,		F.Y.	ENV:	Life Science:
	202	Energy & their		Term II	101	Natural
		Management.				Resources
II	EVS:	Biological Diversity		II	ENV:	Biological
	201	& its Conservation.	//		201	Diversity
		.				
11	EVS:	Pollution Control &		III	ENV:	Water Quality
	202	Environmental Technology.		(T.Y.)	303	
				III	ENV:	Air & Soil
				(T.Y.)	303	Ouality
I & II	EVS:	Practical Course	1	I & II	ENV:	Practical Course
	203	Based on EVS: 201			203	Based on ENV:
		& EVS: 202				201 & ENV: 202

EXAMINATION

•	Pattern of Examination- i) Theory Papers – Semester Pattern Internal Exam + University Exam	(10 + 40) marks.
	ii) Practical Paper – Annual Pattern Internal Exam + University Exam	(20 + 40) marks.
•	Pattern of the question paper (University Exam)	-
	i) Semester Theory Paper	Maximum Marks – 40.
	Q1) 1 mark X 10 10 marks. Q2) 5 marks X 2 10 marks. Q3) 5 marks X 2 10 marks. Q4) 10 marks X 1 10 marks.	
	ii) Annual Practical Paper	Maximum Marks – 80.
	Q1) 10 marks. Q2) 10 marks. Q3) 10 marks. Q4) 10 marks. Q5) 10 marks. Q6) 3 marks X 5 15 marks. Q7) 5 marks X 3 15 marks.	
•	Setting of question paper / Pattern of question pa	aper –
	i) Semester Theory Papers (EVS – 201 & EVS –	- 202): Maximum Marks – 40.
	Q1) Answer the following in 1 – 2 lines a) b) c) d) e) f) g) h) i) j)	10
	 Q2) Write short notes on <u>any two</u> of the followin a) b) c) 	ng 10

Q6) Identification(15)a) Identify & comment on the Water Treatment Process(3)b) Identify & comment on the Waste Disposal / Management Method(3)c) Identify & describe the Watershed Management Technique(3)d) Identify & describe the Working Principle of the energy generation(3)e) Identify & comment on the Inter-specific / Intra-specific relations of the organism(3)	
Q7)(15)a) Reports of the Study Visits(5)b) Report & verification of e-networking & dissemination of ideas on any environmental issue/s pertaining to the course(5)c) Viva-Voce & Certified Journal(5)	

Paper – I, Semester – I, EVS – 201,

Ecology & Ecosystem

(**T.L - 48**)

Unit	Name of the	Content	Lectures
<u>1.</u>	Ecology	 Introduction & Interdisciplinary nature of Ecology. Historical Overview of Ecology – From the ecological views of prehistoric man to the current state of ecology as an applied science. Levels of Organisation – a) Biological / Ecological Spectrum. b) Ecological Hierarchy by Barett et al. Ecological Classification based on – a) Taxonomic Affinity (From Kingdom to Species Level Ecology). b) Habitat Types (Terrestrial & Aquatic Ecology). c) Levels of Organisation (Autecology & Synecology – Population, Community, Biome & Ecosystem Ecology). 	08
2.	Ecosystem Structure & Function – Energy Flow	 Origin of the term. Concept of the Ecosystem. Macro & Micro-ecosystemsetc. Ecosystem Structure – Abiotic & Biotic Components. Ecosystem Function : Energy Flow – a) Ecosystem processes involved – Photosynthesis, Respiration, Heterotrophy & Decomposition. b) Food Chain – Grazing & Detritus. c) Food Web & Ecosystem Stability d) Ecological Energetics – i) Energy Input. ii) Energy Flow – Single Channel & Y shaped models. e) Productivity of Ecosystem – i) Primary Production – GPP & NPP. ii) Secondary Production. iii) Net Ecosystem / Community Production. iv) Standing Crop (Biomass). 	08
3.	Ecosystem Function : Nutrient Cycling	 Concept of – a) Macro & Micro-nutrients. b) Nutrient Cycling c) Biogeochemical Cycles. Biogeochemical Cycles – a) Gaseous Cycles – Hydrological, Carbon & Nitrogen Cycles. b) Sedimentary Cycles – Phosphorus & Sulphur Cycles. c) Human Impact on Biogeochemical Cycles. Cycling of Organic Nutrients. Cycling of Non-essential Elements. Ecosystem Nutrient Cycling Model – Intra-system Cycling & 	08

-			
		Extra-system Transfers.	
		a) Nutrient Inputs.	
		b) Biotic Accumulation of Nutrient.	
		c) Nutrient Outputs.	
		d) Recycling Pathways.	
		• Nutrient Budget.	
4.	Population	Introduction & Basic Concepts.	08
	Ecology	Population Characteristics –	
		a) Size & Density.	
		b) Dispersion – Random, Aggregate & Uniform.	
		c) Natality (Potential & Realised)	
		d) Fecundity	
		e) Mortality (Potential & Realised)	
		f) Survivorship Curves	
		g) Age & Sex Structure	
		The Concept of Carrying Capacity	
		Population Growth	
		a) Growth Curves Exponential & Logistic	
		b) Population Eluctuation	
		c) Biotic Potential & Environmental Resistance	
		d) Population Pagulation Concept of Density Dependent &	
		Density In-dependent Controls	
5	Community	Characteristics of Community Species Diversity Growth form	08
5.	Ecology	Characteristics of Community - Species Diversity, Orowin form & Structure Dominance Succession Trophic Structure	00
	Leology	Ecological Niche, Ecotope & Edge Effect	
		a) Community Composition & Structure	
		 a) Community Composition & Structure. b) Zonation & Stratification in an aquatic & a terrestrial 	
		ecosystem	
		Characters used in Community Structure	
		Characters used in Community Structure-	
		a) Analytical Characters –	
		i) Qualitative.	
		h) Qualitative.	
		b) Synthetic Characters.	
6	Faclarical	Inter-specific & intra-specific Relationships.	00
0.	Ecological	• Causes of Succession.	Vð
	Succession	• Trends of Succession.	
		• Basic Types – Primary, Secondary, Autogenic, Allogenic etc.	
		• Mechanism of Succession –	
		a) Nudation.	
		b) Invasion.	
		c) Competition, Co-action & Reaction.	
		d) Stabilisation (Climax).	
		Models of succession –	
		a) Hydrosere.	
		b) Lithosere.	

Paper – I, Semester – II, EVS -201,

Biological Diversity & its Conservation.

(T.L - 48)

Unit	Name of the	Content	Lectures
No.	Unit		
1.	Biological	(Biological Diversity)	08
	Diversity –	• The Concept, Definition & Scope.	
	Ecosystem	• Levels – Ecosystem, Species & Genetic.	
	Diversity	• Biodiversity at Local, National & International level.	
		(Ecosystem Diversity)	
		Classification of Ecosystem –	
		a) Udvardy's Classification.	
		b) Bailey's Classification.	
		c) Olsen's Classification.	
		d) Holdridge's Classification.	
		• Major Ecosystem types of India with their physical & biological	
		characteristics.	
		• Major Ecosystem types of the World with their physical &	
		biological characteristics.	
2.	Species	• Number of Species –	08
	Diversity	a) Species Inventory.	
		b) Latest estimates for major groups of Plants, Animals & Microbes.	
		 Measuring Species Diversity – Species Richness, Species 	
		Abundance, Species Evenness.	
		• Factors affecting global distribution of Species Richness –	
		Lattitudinal, Altitudinal, Rainfall gradients etc.	
		• Endemism –	
		a) The Concept.	
		b) Types with Examples.	
		c) Endemism in India.	
		• Centers of Diversity –	
		a) The Concept.	
		b) Centers of Diversity : Analyses at Global Level –	
		 Myer's Hot-spots. IIICN's Contors of Plant Diversity 	
		ii) IOCN'S Centers of Flant Diversity.	
		iv) Diversity Zones	
		c) Western Ghat as a Hot-spot	
		d) India as a Megadiversity Country	
3.	Genetic	Meaning & Introduction to Genetic Variations in Species	08
	Diversity	Nature & Origin of Genetic Variations	
	U U	 Factors affecting Genetic Diversity 	
		Measurement of Genetic Diversity –	
		a) Based on DNA & Chromosomes.	
		b) Molecular Marker Techniques.	
		Transgenic Organisms.	

4.	Agro-	• Introduction – meaning & significance.	08
	biodiversity	Origin & Evolution of Agrobiodiversity –	
		a) Domestication.	
		b) Dispersal & Diversification.	
		• Centers of Agrobiodiversity –	
		a) Vavilov's Centers.	
		b) Harlan's Domestication Area.	
		• Diversity in Domesticated Species –	
		a) Variations since the first domestication to the present.	
		b) Land Races, Advanced Cultivars, Wild Relatives of Cultivated	
		Plants & Feral Plants.	
5.	Significance	(Significances)	08
	& Threat to	• Ecological Significances – Contribution of Biodiversity to various	
	Biodiversity	Eco- Services.	
	· ·	• Non Ecological Significances – Nutritional, Medicinal, Aesthetic,	
		Cultural. Commercial Valuesetc.	
		(Threats)	
		• Threats with suitable Examples –	
		a) Large Scale Dev. Projects – Habitat Destruction &	
		Fragmentation.	
		b) Change in Natural Habitat.	
		c) Changing Agri. & Forestry Practices.	
		d) Invasion by Introduced Species.	
		e) Over-exploitation.	
		f) Env. Pollution.	
		g) Global Climate Change.	
		h) Loss of Traditional Knowledge.	
		i) Nature of Legal & Mgmt. System – Human Wildlife Conflict.	
		j) Genetically Modified Organisms etc.	
6.	Biodiversity	Conservation Methods – In-situ & Ex-situ methods with	08
	Conservation	Example.	
		National Conservation Efforts –	
		a) The laws – Environment Protection Act, Fisheries Act, Forest	
		Act. Wildlife Act. Biodiversity Act etc.	
		b) Involving People's Participation – NBSAP, PBRetc.	
		c) Involving Community Participation – JFM, EDP etc.	
		d) People's Movement – Silent Valley Movement, Beej Bachao	
		Andolan etc.	
		International Conservation Efforts –	
		a) IUCN – The World Conservation Union.	
		b) CBD.	
		c) CITES.	
		d) Convention on Wetlands of International Importance.	
		e) World Heritage Convention.	
		• Traditional Methods of Conservation – Sacred Groves / Ponds /	
		Species, Periodic restrictions on resource harvesting etc.	
		• Need & Awareness.	
		 Need & Awareness. 	

<u>Paper – II, Semester – I, EVS – 202,</u>

Natural Resources, Energy & their Management. (T.L - 48)

Unit	Name of the	Content	Lectures
No.	Unit		Lectures
1.	Resources	• Meaning & Definition.	08
		 Classification of Resources: 	
		a) Natural Vs Artificial Resources.	
		b) Material Vs Energy Resources.	
		c) Biotic / Biological Vs Abiotic / Non-biological Resources.	
		d) On the basis of its Renewability with-in the Human Time Scale as –	
		Non-renewable, Potentially renewable & Perpetual Resources.	
		• Renewability & Finite Nature of Resources – Regenerative &	
		Assimilative Capacity of the Earth.	
		• Man's interaction with Natural Resources –	
		a) As Resource Base.	
		b) As Waste Sink.	
		c) Cultural Significance of Natural Resources.	
		Importance & Scope of Natural Resources.	
2.	Forest,	A) Forest Resource:	08
	Grassland &	Classification – Old & Second Growth Forests etc.	
	Wildlife	Ecological Significance.	
	Resources	• Forest Mgmt. in India – Laws, JFM, EDP, Protected Areas.	
		B) Grassland Resource:	
		Classification.	
		Significance - Ecological & Non-ecological.	
		• Grassland Mgmt. – Prevention from Overgrazing etc.	
		C) Wildlife Resource:	
		Meaning & Definition.	
		Significance - Ecological & Non-ecological.	
		• Protection & Conservation of Wildlife – Laws, Protected Areas (In-	
		situ) & Ex-situ methods.	
3.	Food	World Food Problems:	08
	Resources	a) Increasing World Food Demand.	
		b) Nutrition Related Problems.	
		c) Food Distribution.	
		Traditional & Modern Agricultural Systems.	
		• The Green Revolution in India.	
		Effects of Modern Agriculture:	
		a) Chemical related Problems – Soil & Under-ground Water	
		Pollution.	
		b) Change in Land-use Pattern.	
		c) Loss of Genetic Diversity as a result of use of HYV's & GM Crops	
		d) Irrigation related Problems – Waterlogging Salinisation	
		e) Social changes – Increasing inequity etc	
		Sustainable Agriculture.	

4.	Land &	A) Land Resource:	08
	Water	• Significance of the top-most layer.	
	Resources	• Soil Erosion – Causes – Water & Wind Erosion of Soil.	
		Control of Erosion & Soil Conservation Methods.	
		B) Water Resource:	
		Sources / Occurrences & Distribution.	
		• Water Scarcity – the reasons.	
		• Conflicts over water in World & India.	
		Conservation & Mgmt. –	
		a) Traditional Methods.	
		b) Rain-water Harvesting & Ground Water Recharge.	
		c) Water-shed Mgmt. – the concept.	
5.	Energy	Classification of energy resources:	08
	Resources -I	a) Exhaustible Vs Inexhaustible.	
		b) Polluting Vs Non-polluting.	
		c) Conventional Vs Non-conventional.	
		• Energy Crisis. Energy Scenario in World & in India.	
		Conventional Energy Resource –	
		a) Coal.	
		b) Oil.	
		c) Natural Gas.	
		d) Nuclear Energy.	
		• Solar Energy – Solar Cells, Solar Heating (Active & Passive), Solar	
		Collectors.	
		• Wind Energy – Location of Wind Generator Site, Wind Energy	
		Converters.	
6.	Energy	• a) Hydro-electric Energy – Impulse & Reaction Turbines.	08
	Resources -II	b) Tidal Energy – Wells Turbine.	
		c) Wave Energy.	
		• Geothermal Energy.	
		• Bioenergy –	
		a) Biomass &, Biomass Programme – Energy Plantation, Wastes.	
		b) Biogas.	
		c) Ethanol.	
		d) Biodiesel.	
		• Energy Management – Energy Audit …etc.	

<u>Paper – II, Semester – II, EVS – 202,</u>

Pollution Control & Environmental Technology.

Unit	Name of the	Content	Lectures
No.	Unit		
1.	Control Of	• At source reduction:	08
	Air Pollution	a) Raw material changes.	
		b) Process / Operational changes.	
		c) Equipment modification / replacement.	
		• Air Pollution control technology: Principle -	
		a) Condensation.	
		b) Absorption.	
		c) Adsorption.	
		d) Filtration.	
		e) Electrostatic Precipitation.	
		f) Gravity Settling.	
		g) Wet scrubbing.	
		 Control of emissions from automobiles. 	
		a) Redesigned engines.	
		b) Catalytic converters etc.	
2.	Control Of	• Segregation & Re-utilisation of Domestic Waste Water – Grav &	08
	Water	Black Water.	
	Pollution	• Waste Water Treatment	
		a) Primary Treatment – Screening Grit removal Sedimentation etc.	
		b) Secondary Treatment -	
		Aerobic Method- i) Activated Sludge Process	
		ii) Trickling Filter	
		Anserobic Method	
		c) Tertiary Treatment - Disinfection (Chlorination)	
		d) Advanced Treatments - Carbon Adsorption Reverse Osmosis Ion	
		exchange	
		Bioremediation	
2	Control Of	Noise Control Techniques	08
з.	Noiso	Noise Control Techniques - Sound Insulation	00
	Dollution	a) Sound Institution.	
	Fonution	b) Sound Absorption.	
		d) Vibration Jaciation	
		a) Active Noise Control/Noise Concellation	
		e) Active Noise Control/ Noise Cancellation.	
		• Control at Source -	
		a) Selection & Maintenance of machines.	
		b) Control over vibrations.	
		• Control in Transmission Path - Installation of barriers / enclosures	
		etc.	
		Control at Reciever -	
		a) Using protective equipments.	
		b) Job rotation to reduce exposureetc.	

(**T.L - 48**)

4.	Control Of Solid Waste Pollution	 a) Material Separation - Separation Techniques. b) Processing - Recovery, Recycling and Reuse. Mechanical Volume and Size Reduction - a) Dewatering and Drying . b) Volume Reduction / Compaction. c) Size Reduction/ Shredding. Disposal/Management Options - 	08
		 a) Uncontrolled Dumping/ Non Engineered Disposal. b) Sanitary Landfill. c) Composting. d) Incineration. e) Pyrolysis. f) Injection Wells. g) Gasification/ Bio Gasification. h) Ocean Dumping. 	
5.	Control Of Soil Pollution	 Biological Methods: a) To reduce dependency on chemicals – Use of Biofertilizers & Biopesticides, Conservational Tillage, Mixed Cropping, Crop rotation, Biological Pest Mgmt., Organic Farmingetc. b) Bio / Phyto-remediation of contaminated sites. Chemical Methods: a) Ex-situ - Acid Leaching. b) In-situ - pH correction using Lime or Gypsum. Physical / Mechanical Methods: a) Ex-situ - Heavy metal immobilization through Vitrification. b) In-situ – Soil Vapour Extraction. 	08
6.	Control Of Thermal & Nuclear Pollution	 Control of Thermal Pollution - a) Cooling Ponds. b) Spray Ponds. c) Cooling Towers (Wet And Dry Cooling Towers). d) Direct Conversion of Heat into Electricity. e) Other Uses (Heating Of Buildings, Heating Swimming Pools, Desalinationetc.). Control of Nuclear Pollution – a) Control of release & exposure. b) Proper Treatment & Disposal of Nuclear Waste. c) Protection to Workers. 	08

Paper-III, EVS- 203,

Practical Course Based on EVS 201 & EVS 202.

(Any 24 Practical to be Conducted.)

Sr. No.	Description	Practical Type	Practical Sessions
1.	Sampling of Atmospheric Dust by Gravity Settling to measure the rate of Dustfall.	Field + Laboratory.	02
2.	Sampling & Determination of Respirable Particulate Matter. (Respirable Dust Sampler)	Field + Laboratory.	02
3.	Determination of Optimum Dose of Alum (Coagulant) required for water.	Laboratory.	01
4.	Determination of Turbidity of water. Laborato (Turbidimeter / Nephelometer)		01
5.	Determination of Residual Chlorine from treated water.	Laboratory.	01
6.	Determination of Dissolved Oxygen in water.	Laboratory.	01
7.	Determination of Nitrate from water. (UV Spectrophotometer)	Laboratory.	01
8.	Determination of Inorganic Phosphate from water. (Colorimeter)	Laboratory.	01
9.	Visit to Water / Waste Water Treatment Plant.	Visit.	01
10.	Determination of Soluble Salts from Soil.	Laboratory.	01
11.	Determination of Available Nitrogen from soil.	Laboratory.	01
12.	Determination of Available Potassium from soil. (Flame Photometer)	Laboratory.	01
13.	Determination of Lime required for Acidic soil.	Laboratory.	01
14.	Visit to Soil Survey Department.	Visit.	01
15.	Visit to Municipal Land-fill.	Visit.	01
16.	Field visit to study Watershed Mgmt. Techniques.	Visit.	01
17.	Study of the Working Principle of Solar Collectors. (Demonstration)	Demonstration.	01
18.	Visit to Wind Energy Farm.	Visit.	01
19.	Measurement of Primary Productivity of grassland by Harvest Method.	Field + Laboratory.	01

20.	Estimation of Total Chlorophyll from plants in Clean & Polluted Environment.	Laboratory.	01
21.	Study of grassland vegetation by List Count Quadrat Method to determine the Frequency, Density & Abundance.	Field.	01
22.	Determination of Frequency, Density & Abundance of species in grassland vegetation by List Count Quadrat Method.	Field.	01
23.	Determination of Frequency & Abundance of species across terrestrial – aquatic transitional zone, by Line Transect Method.	Field.	01
24.	Determination of Density of species across terrestrial – aquatic transitional zone by Belt Transect Method.	Field.	01
25.	Visit to Nature Interpretation / Information Centre.	Visit.	01
26.	Visit to National Park / Wildlife Sanctuary to study Wildlife & various Inter-specific & Intra- specific Relations.	Visit.	≥ 01 Day
27.	Continuation of the use of Social Media for e- networking & dissemination of ideas on Environmental Issues Pertaining to the Course.		<u>≥</u> 02

<u>Reference Books</u>

- Understanding Environment; Chokkar K. B., Pandya M. & Raghunathan M.; Centre for Environment Education; Sage Publication, New Delhi.
- An Advanced Textbook on Biodiversity Principles & Practice; Krishnamurthy K.V.; Oxford & IBH Publishing Co. Pvt. Ltd.; New Delhi.
- Ecology Principles & Applications; Chapman J. L. & Reiss M. J.; Cambridge University Press.
- Fundamentals of Ecology; Odum P.E.; Natraj Publishers; Dehradun; 3 Edt..
- Ecology, Environment & Resource Conservation; Singh J.S., Singh S.P. & Gupta S.R.; Annamaya Publishers; New Delhi.
- Ecology & Environment; Sharma P.D.; Rastogi Publication; Meerut; 11 Rev. Edt..
- Environment Science; Tyler M.G.; Wadsworth Publishing Co.; 1997.
- Perspective in Environmental Studies; Kaushik & Kaushik; New Age International Pvt. Ltd. Publishers.
- Environmental Science; Santra S.C.; New Central Book Agency (P) Ltd.; 2 Edt..
- Environmental Chemistry, Dey A. K.; New Age International Publishers; 6 Edt..
- Air Pollution; Rao M.N. & Rao H.V.N.; Tata McGraw Hill; New Delhi; 1989.
- Environmental Pollution Control & Environmental Engineering; Rao C. S.; Tata McGraw Hill; New Delhi; 1994.
- Pollution Management; Agarwal S.K.
- Environmental Science; Daniel Chiras.
- Waste Water Engineering, Treatment, Disposal & Reuse; Metcalf & Eddy.
- Manual for Field Ecology; Mishra R.
- Handbook of Methods in Environmental Studies Vol-I ⅈ Mailti S.K.; ABD Publishers; Jaipur.
- Physico-Chemical Examination of Water, Sewage & Industrial Effluents; Manivasakam N.; Pragati Prakashan; Meerut; 1984.
- Chemical & Biological Methods for Water Pollution Studies; Trivedi R.K. & Goel P.K.; Environmental Publications; Karad; 1986.
- Instrumental Methods of Analysis; Willard; cbpspd; 7 Edt..